Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo

Abstract

Current methods for programmed RNA editing using endogenous ADAR enzymes and engineered ADAR-recruiting RNAs (arRNAs) suffer from low efficiency and bystander off-target editing. Here, we describe LEAPER 2.0, an updated version of LEAPER that uses covalently closed circular arRNAs, termed circ-arRNAs. We demonstrate on average ~3.1-fold higher editing efficiency than their linear counterparts when expressed in cells or delivered as in vitro-transcribed circular RNA oligonucleotides. To lower off-target editing we deleted pairings of uridines with off-target adenosines, which almost completely eliminated bystander off-target adenosine editing. Engineered circ-arRNAs enhanced the efficiency and fidelity of editing endogenous CTNNB1 and mutant TP53 transcripts in cell culture. Delivery of circ-arRNAs using adeno-associated virus in a mouse model of Hurler syndrome corrected the pathogenic point mutation and restored α-L-iduronidase catalytic activity, lowering glycosaminoglycan accumulation in the liver. LEAPER 2.0 provides a new design of arRNA that enables more precise, efficient RNA editing with broad applicability for therapy and basic research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Leveraging endogenous ADAR for programmable RNA editing by genetically encoded circ-arRNAs.
Fig. 2: Circ-arRNAs enable efficient and long-lasting programmable RNA editing on endogenous transcripts.
Fig. 3: Leveraging endogenous ADAR protein for programmable RNA editing with in vitro-transcribed circ-arRNAs.
Fig. 4: Transcriptome-wide specificity of RNA editing by circ-arRNAs.
Fig. 5: Engineered circ-arRNAs reduce bystander off-target editing.
Fig. 6: Activation and restoration of protein function in cell culture and Hurler syndrome mice by circ-arRNAs.

Similar content being viewed by others

Data availability

All data and materials presented in this manuscript are available from the corresponding author (W.W.) upon reasonable request with a completed material transfer agreement. Raw data for whole-transcriptome RNA-seq are available as a BioProject with Project ID PRJNA775856. Source data are provided with this paper.

References

  1. Fry, L. E., Peddle, C. F., Barnard, A. R., McClements, M. E. & MacLaren, R. E. RNA editing as a therapeutic approach for retinal gene therapy requiring long coding sequences. Int. J. Mol. Sci. 21, 277 (2020).

    Google Scholar 

  2. Tan, M. H. et al. Dynamic landscape and regulation of RNA editing in mammals. Nature 550, 249–254 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nishikura, K. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 79, 321–349 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bass, B. L. & Weintraub, H. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55, 1089–1098 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Wong, S. K., Sato, S. & Lazinski, D. W. Substrate recognition by ADAR1 and ADAR2. RNA 7, 846–858 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Montiel-Gonzalez, M. F., Vallecillo-Viejo, I., Yudowski, G. A. & Rosenthal, J. J. Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing. Proc. Natl Acad. Sci. USA 110, 18285–18290 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sinnamon, J. R. et al. Site-directed RNA repair of endogenous Mecp2 RNA in neurons. Proc. Natl Acad. Sci. USA 114, E9395–E9402 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Montiel-Gonzalez, M. F., Vallecillo-Viejo, I. C. & Rosenthal, J. J. An efficient system for selectively altering genetic information within mRNAs. Nucleic Acids Res. 44, e157 (2016).

    PubMed  PubMed Central  Google Scholar 

  9. Hanswillemenke, A., Kuzdere, T., Vogel, P., Jekely, G. & Stafforst, T. Site-directed RNA editing in vivo can be triggered by the light-driven assembly of an artificial riboprotein. J. Am. Chem. Soc. 137, 15875–15881 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schneider, M. F., Wettengel, J., Hoffmann, P. C. & Stafforst, T. Optimal guideRNAs for re-directing deaminase activity of hADAR1 and hADAR2 in trans. Nucleic Acids Res. 42, e87 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vogel, P., Hanswillemenke, A. & Stafforst, T. Switching protein localization by site-directed RNA editing under control of light. ACS Synth. Biol. 6, 1642–1649 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vogel, P., Schneider, M. F., Wettengel, J. & Stafforst, T. Improving site-directed RNA editing in vitro and in cell culture by chemical modification of the guideRNA. Angew. Chem. Int. Ed. Engl. 53, 6267–6271 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Vogel, P. et al. Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs. Nat. Methods 15, 535–538 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cox, D. B. T. et al. RNA editing with CRISPR-Cas13. Science 358, 1019–1027 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fukuda, M. et al. Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing. Sci. Rep. 7, 41478 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wettengel, J., Reautschnig, P., Geisler, S., Kahle, P. J. & Stafforst, T. Harnessing human ADAR2 for RNA repair – recoding a PINK1 mutation rescues mitophagy. Nucleic Acids Res. 45, 2797–2808 (2017).

    CAS  PubMed  Google Scholar 

  17. Heep, M., Mach, P., Reautschnig, P., Wettengel, J. & Stafforst, T. Applying human ADAR1p110 and ADAR1p150 for site-directed RNA editing-G/C substitution stabilizes guideRNAs against editing. Genes (Basel) 8, 34 (2017).

    Article  CAS  Google Scholar 

  18. Katrekar, D. et al. In vivo RNA editing of point mutations via RNA-guided adenosine deaminases. Nat. Methods 16, 239–242 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Grunewald, J. et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569, 433–437 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grunewald, J. et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat. Biotechnol. 37, 1041–1048 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jin, S. et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science 364, 292–295 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Vallecillo-Viejo, I. C., Liscovitch-Brauer, N., Montiel-Gonzalez, M. F., Eisenberg, E. & Rosenthal, J. J. C. Abundant off-target edits from site-directed RNA editing can be reduced by nuclear localization of the editing enzyme. RNA Biol. 15, 104–114 (2018).

    Article  PubMed  Google Scholar 

  24. Chew, W. L. et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wagner, D. L. et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 25, 242–248 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Simhadri, V. L. et al. Prevalence of pre-existing antibodies to CRISPR-associated nuclease Cas9 in the USA population. Mol. Ther. Methods Clin. Dev. 10, 105–112 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Charlesworth, C. T. et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Teoh, P. J. et al. Aberrant hyperediting of the myeloma transcriptome by ADAR1 confers oncogenicity and is a marker of poor prognosis. Blood 132, 1304–1317 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Haapaniemi, E., Botla, S., Persson, J., Schmierer, B. & Taipale, J. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24, 927–930 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Ihry, R. J. et al. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat. Med. 24, 939–946 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Merkle, T. et al. Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides. Nat. Biotechnol. 37, 133–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Qu, L. et al. Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs. Nat. Biotechnol. 37, 1059–1069 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Enuka, Y. et al. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44, 1370–1383 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Kristensen, L. S. et al. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675–691 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Litke, J. L. & Jaffrey, S. R. Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts. Nat. Biotechnol. 37, 667–675 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Beaudry, D. & Perreault, J. P. An efficient strategy for the synthesis of circular RNA molecules. Nucleic Acids Res. 23, 3064–3066 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Puttaraju, M. & Been, M. D. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons. Nucleic Acids Res. 20, 5357–5364 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuttan, A. & Bass, B. L. Mechanistic insights into editing-site specificity of ADARs. Proc. Natl Acad. Sci. USA 109, E3295–E3304 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wahlstedt, H. & Ohman, M. Site-selective versus promiscuous A-to-I editing. Wiley Interdiscip. Rev. RNA 2, 761–771 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Gallo, A., Vukic, D., Michalik, D., O’Connell, M. A. & Keegan, L. P. ADAR RNA editing in human disease; more to it than meets the I. Hum. Genet. 136, 1265–1278 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Eggington, J. M., Greene, T. & Bass, B. L. Predicting sites of ADAR editing in double-stranded RNA. Nat. Commun. 2, 319 (2011).

    Article  PubMed  CAS  Google Scholar 

  44. Bazak, L. et al. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 24, 365–376 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tian, N. et al. A structural determinant required for RNA editing. Nucleic Acids Res. 39, 5669–5681 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. MacDonald, B. T., Tamai, K. & He, X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17, 9–26 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Floquet, C., Deforges, J., Rousset, J. P. & Bidou, L. Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides. Nucleic Acids Res. 39, 3350–3362 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Kern, S. E. et al. Identification of p53 as a sequence-specific DNA-binding protein. Science 252, 1708–1711 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Doubrovin, M. et al. Imaging transcriptional regulation of p53-dependent genes with positron emission tomography in vivo. Proc. Natl Acad. Sci. USA 98, 9300–9305 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, D. et al. Characterization of an MPS I-H knock-in mouse that carries a nonsense mutation analogous to the human IDUA-W402X mutation. Mol. Genet. Metab. 99, 62–71 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Samaridou, E., Heyes, J. & Lutwyche, P. Lipid nanoparticles for nucleic acid delivery: current perspectives. Adv. Drug Deliv. Rev. 154–155, 37–63 (2020).

    Article  PubMed  CAS  Google Scholar 

  52. Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu. Rev. Med. 70, 307–321 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou, Y., Zhang, H. & Wei, W. Simultaneous generation of multi-gene knockouts in human cells. FEBS Lett. 590, 4343–4353 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the staff of the BIOPIC High-throughput Sequencing Center (Peking University) and Genetron Health for their assistance in NGS analysis, and the National Center for Protein Sciences (Beijing) and the flow cytometry Core at National Center for Protein Sciences at Peking University, particularly Y. Guo and F. Wang, for technical help. We thank the High-Performance Computing Platform at Peking University for providing the platforms for NGS data analysis. We thank the Laboratory Animal Center at Peking University for the feeding of mice. This project was supported by funds from the National Key R&D Program of China (no. 2020YFA0707800), the Beijing Municipal Science & Technology Commission (no. Z181100001318009), the National Science Foundation of China (no. 31930016), the Beijing Advanced Innovation Center for Genomics at Peking University and the Peking-Tsinghua Center for Life Sciences (both to W.W.) and the Fellowship of China National Postdoctoral Program for Innovative Talents (no. BX20200010 to L.Q.).

Author information

Authors and Affiliations

Authors

Contributions

W.W. conceived and supervised this project. W.W., Z.Y., L.Q. and H.T. designed experiments. Z.Y., L.Q. and H.T. performed experiments with the help of P.Y., Z.Y., Y.Z., X.Z., Z.F., F.T. and C.W. Y.Y. conducted all sample preparation for NGS. Z.Y., Z.L. and Y.L. performed data analysis. Z.Y., L.Q. and W.W. wrote the manuscript with help from the other authors.

Corresponding author

Correspondence to Wensheng Wei.

Ethics declarations

Competing interests

Two patents have been filed relating to the data presented. W.W., Z.Y., L.Q., F.T. and C.W. are coinventors on patent applications describing circ-arRNA. W.W. and Z.Y. are coinventors on patent applications describing engineered circ-arRNA. P.Y., Z.Y. and Y.Z. are employees of EdiGene Inc. W.W. is a founder and scientific adviser for EdiGene, Inc. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Michael Jantsch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10.

Reporting Summary.

Supplementary Table 1

Sequencing of arRNAs.

Supplementary Table 2

Sequencing of primers.

Source data

Source Data Fig. 1

Unprocessed immunoblots for Fig. 4e.

Source Data Fig. 2

Unprocessed gels for Supplementary Fig. 2e.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, Z., Qu, L., Tang, H. et al. Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo. Nat Biotechnol 40, 946–955 (2022). https://doi.org/10.1038/s41587-021-01180-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41587-021-01180-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research